

Wind Characteristics

Small Wind Systems Tutorial Village Power Conference Workshop

Wind Energy

- Created by Uneven Solar Heating
- Wind Energy is Kinetic Energy ... Mass & Momentum
- Wind Energy is Proportional to Velocity Cubed (V³) ... If Velocity is Doubled, Power Increases by a Factor of Eight (2³ = 8) ... Small Differences in Average Speed Cause Big Differences in Energy Production
- Wind Resources are Abundant
- Distributed ... Most Areas Have Sufficient Wind for Off-Grid Power Applications
- Wind is Intermittent

Power in the Wind (W/m²)

= 1/2 x air density x swept rotor area x (wind speed)³

A

Density = P/(RxT)

P - pressure (Pa)

R - specific gas constant (287 J/kgK)

T - air temperature (K)

Area = π r²

Instantaneous Speed (not mean speed)

m²

m/s

kg/m³

Wind Shear

The change in horizontal wind speed with height

- A function of wind speed, surface roughness (may vary with wind direction), and atmospheric stability (changes from day to night)
- Wind shear exponents are higher at low wind speeds, above rough surfaces, and during stable conditions
- \diamond Typical exponent (α) values:
 - .10 .15: water/beach
 - .15 .25: gently rolling farmland
 - .25 .40+: forests/mountains

$$\alpha = \frac{\text{Log}_{10} [V_2/V_1]}{\text{Log}_{10} [Z_2/Z_1]} \qquad V_2 = V_1(Z_2/Z_1)^{\alpha}$$

Taller is Vastly Better

Increase in Wind Speed with Height

Increase in Wind Power with Height

Turbulence

- Turbulence caused by obstructions cuts performance
- Rule-of-Thumb: Be 30 ft. above obstacles within 300 ft.

Wind is Highly Variable

Daily Variations

Seasonal and Annual Variations

Monthly Average Wind Speed

Month to Month

Year to Year

Wind Direction Patterns

- Wind direction changes with weather front movements
- Sites have "Prevailing Wind Direction" ... Useful in considering effects of obstructions and multiturbine array layout
- Trade wind regimes can be essentially unidirectional

Dark wedges are energy weighted

